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NATURAL CONVECTION FROM A PLANE, VERTICAL 

SURFACE IN NON-ISOTHERMAL SURROUNDINGS 

R. CHRESEWRIGHTt 

(Received 1 February 1967 and in revisedform 27 June 1967) 

Abstract-This paper presents a theoretical investigation of laminar natural convection from a plane, 
vertical surface in non-isothermal surroundings. Conditions are derived for the existence of similarity solu- 
tions. A method is proposed for generalizing the conditions pertaining to existing similarity solutions so 
as to include the effect of non-isothermal surroundings. Numerical solutions of the ordinary differential 
equations resulting from the similarity transformation are reported for the special case of an isothermal 
surface. These results suggest that some variations of surrounding temperature may lead to flow reversal 

in the boundary layer. Experimental evidence suggests that this may be an unstable condition. 
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CQ, 

0, 

Superscripts 

conditions outside the boundary 
layer ; 
an arbitrary referencecondition. 

vertical temperature gradient outside the bound- 
ary layer in the closed cavity problem has been 
made by Schwind and Vliet [3}. 

f 
, the prime is used to indicate 

differentiation with respect to 
the independent variable. 

IN~ODU~ON 

FOLLOWING the work of Yang[l], it has been 
suggested that all the “exact” similarity solu- 
tions for the above problem have been explored. 
However, during a recent experimental in- 
vestigation (Cheesewright [Z, 16]), it became 
apparent that existing solutions, which are all 
concerned with isothermal surroundings, did 
not provide a satisfactory description of the 
experimental phenomena. 

A study of the problem revealed a new class 
of solutions for non-isothermal surroundings. 
The derivation of these solutions and the 
numerical results arising from them are con- 
sidered in this paper. The form of temperature 
variation in the surroundings considered is that 
in which the temperature far away from the 
heated plate is a function of x, the distance from 
the leading edge. 

The procedure adopted by Yang [l] for the 
determination of the similarity transformation 
is followed closely, and after detailed examina- 
tion of two cases of special interest, a way of 
generalizing the results of Yang [l] to include 
cases of non-isothermal surroundings is pro- 
posed. 

It is believed that the results for the special 
case of an isothermal surface in non-isothermal 
surroundings have important applications in 
the experimental study of transition to turbu- 
lence in natural convection on a plane vertical 
surface. The results in general make possible the 
consideration of natural convection from an 
isolated surface in a cavity of limited extent, and 
may also facilitate the study of the boundary- 
layer regimes in natural convection in closed 
cavities. A qualitative study of the effects of a 

ANALYSIS 

With respect to the coordinate system Fig. 1, 
the equations of momentum, continuity and 
energy which govern the flow and heat transfer 
in a laminar boundary layer in the presence of a 
body force are respectively 

au du du 1 dP 
7&+U~‘“j-j=-b~ +o+ve 

aY* 

(1) 

u+d”=o 
ax ay 

(3) 

with the appropriate boundary conditions. 

FIG. 1. Coordinate system. 

If consideration is restricted to a region of 
plate (which may or may not include the leading 
edge), having a temperature everywhere greater 
than, or equal to that of its surroundings, we 
can write Q = - g. It should be noted that for 
cases in which 8, - 19, decreases with distance 
up the plate, the above restrictions lead to the 
consideration of a region of limited extent rather 
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than the semi-infinite region usually considered 
in boundary-layer problems. At no time, how- 
ever, will consideration be given to effects due 
to a region having a trailing edge. 

Outside the boundary layer 

$z+um~+L!c+ 
pm dx 

g=o (4) 

(for pure natural convection u, = 0). 

Eliminating dP/dx between equations (1) and 

(4), we get 

au au au 
Pz+u&+"ay ( > ( au, au, 

=Pm ~+Kcl~ 
> 

-R(P-Pco)+P$. (5) 

Following Ostrach [4], property variations 
are assumed to be important only in so far as 
they affect the body force term, and the density 
variation is represented by 

P = PoCl - B@ - fvl. 
Where p. is the density at an arbitrary reference 
temperature, &,, and /I = constant (l/T, for a 
perfect gas). 

These considerations allow us to rewrite 
equation (5) as 

+gp(e-s,)+vfi 
aY2 (6) 

provided (0 - 0,) 4 T,. 
Equations (2, 3, 6) govern the flow which we 

wish to investigate, subject to the following 
boundary conditions 

at y=O u = u = 0 and 8 = 0,(x, t) 

at y=oo u = u,(x, t) and 8 = f3&, t). 

It may be noted that equation (6) is identical 
with the corresponding equation for the case 
em = constant. The above derivation has been 
given because it is not felt that this identity is 
obvious. 

Introducing the stream function $, [which 
satisfies equation (2)], equations (6) and (3) 
become 

a'* a$ a’$ a+a2+ au, 

ayat + F axay axay2 =;jt-+“co~ 

+gp(e-e )+v3 co a9 (7) 

ae a* ae a* ae k a28 

t+ayax-xay=pC,ay2 (8) 

It is convenient to make these equations 
dimensionless by writing X = x/L, Y = y/L, 
Y = *Iv, Re = u,Llv, G = pgE(e - eoyv2, 
G, = /?gL?(e, - t&,)/v2 and t* = vt/L! where L 
is a characteristic length. 

Equations (7) and (8) now become 

a9 ay a9 aya2y aRe 

ayat* + & axay ---2 ax ay 
==+Reg 

+G-G +‘2 co ay3 
(9) 

aG ayaG ayaG 
l a2G (10) ---+-_-__=__” 

ayax axar Pray 

where Pr = pCJk. 
In order to determine the necessary conditions 

for the existence of similarity solutions, we 
follow Yang [l] and introduce the new variables 

vl = YVi(X, t*) 

f(V) = ‘uI(P2(X? t*) 

@(d = (G - GAG, - Gm) 

where G, = p&(0,,, - 0,)/v’. 
The required conditions are those which 

enable the introduction of the new variables to 
transform equations (9) and (10) into ordinary 
differential equations together with appropriate 
boundary conditions. 

In terms of the new variables the boundary 
conditions become 

@=l at q=O, @=O at q=cc 

f = dfldq = 0 at q = 0, 

dfldq = Refcp,q, at q = co. 
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Since the new boundary conditions must be 
independent of X and t* we must have 

Re 
- = constant = C,. 
‘pl(P2 

(11) 

The conditions for equations (9) and (10) to 
transform into ordinary differential equations 
may be seen, by comparison with the problem 
treated in Yang [l], to be given by 

(Gw-G,)= c 

d(P2 

2 

acp11 c 

--7 = 
at* cpl 3 

%2 1 --= 

at* ‘P:(P~ 

c 

4 

a(P1 ‘p2 c 

-1= 
axcp, 5 

&72 1 -- = c 

axq, 6 

a(G, - G,) 1 

at* (G, - G,) cp: = ” 

a(G, - G,) 
8X (G, -q&Jq, = ” 

ac, 1 

at* (G, - G,) cp: = 
c9 

=cc ‘p2 

= (G, - G,)cp, 
= Cl, 

aRe Re c 

axcp:cp,= I1 

aRe 1 c 
at*== 12 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

where the C’s are all constants 
Since, in general, we have twelve equations 

imposing conditions on five quantities, there are 
seven relations between the constants. These are : 

c,czJ = - c,c, 

c&j = 2C4C5 •,- c,c, 

c, = 3c, + c4 

cf, = 3Cs + C6 

4C,ClO = 5C& + c&j 

cll = c:(c, + c6) 

Cl2 = GIG + C4). 

At this point it is desirable to consider the 
relationship between the present work and that 
contained in Yang [l] and other related 
publications. 

The work of Yang [l] and, indeed, all other 
theoretical treatments of laminar natural con- 
vection from a plane surface in an infinite 
medium, known to the author, are concerned 
with convection from a surface in isothermal 
surroundings. The present investigation deals 
with convection from a surface in surroundings 
in which the temperature is a function of the 
distance along the plate and of time. Now it 
might be supposed that, as for forced con- 
vection (e.g. Hansen [5]), only the difference in 
temperature between the surface and the sur- 
roundings is important. However, this is not the 
case in problems of natural convection, because 
of the appearance of 8, in the body force term 
in the momentum equation. 

It should be noted that the present work 
includes all cases treated previously, including 
those of Yang [I]. This is demonstrated by 
putting G, = const. and Re = 0 in equations 
(ll-22), and writing Gc = G, - G,, when 
these equations become identical to equations 
(16-22) in Yang [l]. 

Two cases are of particular interest, viz. 
steady natural convection, (a) from an iso- 
thermal surface in non-isothermal surroundings ; 
(b) from a non-isothermal surface maintained at 
a constant temperature differential with its 
surroundings. 

PARTICULAR CASES 

(i) Steady natural convection from an isothermal 
surface in non-isothermal surroundings 

In this case Re = 0, 8, = const., 0, = 0,(x) 
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andhenceC,=C,=C,=C,=C,=Crr= 
Cl2 = 0 and Cs = - Cr,,. Equations (12), (15), 
(16) and (18) determine the conditions which 
are imposed on cpl, cp2 and G,. A study of the 
general solutions to equations (15) and (16) 
shows that two cases must now be considered. 

Case (a): C,JC5 # 1. Here 

‘pl = [Cr4 + (CcJC& - l)X]l’(&-l) 

(23) 

cp2 = Cr3[& + (Cg/C1& - l)X]c’(e-l) 

(24) 
and 

G, - G, = CzC13[G4 

+ (C,/C, 3)(& - 1)x]‘“+ 3)‘(e- l) (25) 

where E = C6/C5 and Cl3 and Cl4 are con- 
stants of integration. 

Since G, - G, is the quantity which is 
specified in any particular case, and since there 
can only be three independent constants in this 
problem, we are at liberty to specify two of the 
constants in equation (25) provided we retain 
the most general form. It is most convenient to 
write C, = 1 and CJE - 1) = 4. 

If we also write n = (E + 3)/(~ - 1) then 
equations (23-25) become 

‘pr = [C,, + (4/C13)X](“-1)‘4 (26) 

cp2 = Cr3[C4 + (4/C13)X](n+3)‘4 (27) 

G, - G, = G3CC14 + (4/C,,)X1”. (28) 

It may be easily demonstrated that the above 
specification of C5 may be rewritten as C5 = n 
- 1 and that this implies that Cs = n + 3 and 
Cs = 4n and has the additional advantage that 
it enables the special case of CS = 0 to be 
retained in the general solution. 

Under these conditions, equations (9) and 
(10) reduce to 

f”’ + (n + 3) ff” - i(n + 1) (f’)’ + @ = 0 

(29) 

W + Pr(n + 3)fV + 4nPrf’(l - @) = 0 

(30) 

where the prime indicates differentiation with 
respect to rf. These equations, together with the 
appropriate boundary conditions, may be solved 
numerically. 

Of particular interest are the heat-transfer 
rate from the surface and the component of 
velocity parallel to the surface. 

u = 2 = q1(p2fl ay 
= C,,[C,, + (4/C13)X](“+1)‘2 f’. 

Expressing the heat-transfer rate in dimension- 
less form in terms of the Nusselt number, we 
obtain 

Q’x 

[ 
sNL - e,P * x 

Ivu = k(8, - em) = V2C13 l- L 

x [Cl4 + :c13)x,+ 

If Cl4 = 0 this reduces to 

Nu = (Gr)* @L/(2)* 

where Gr = gfi(&, - 8,)x3/v2. 

The condition Cl4 = 0 corresponds to the 
boundary-layer having zero thickness at x = 0 
and it is noted that, except for the special case of 
G, - G, = constant (n = 0), zero boundary- 
layer thickness must always coincide fiith G, - 
G, = 0 for similarity solutions to exist. 

Case (b): C6/C5 = 1. Here (p2 = Cl5 rp,, 
‘pl = Cl6 exp (C,X/C,,) and G, - G, = 
C2C15C:6 exp (4C,X/C1& where C,, and C,, 
are constants of integration. By the same argu- 
ment as in case (a) we can set C, = 1 and C, = 1 
which implies that C6 = 1 and C, = 4. If we 
also write m = 4/C,, then 

‘Pi = Cr, exp @X/4) (31) 

cp2 = (4C16/m) exp (m-W) (32) 

G, - G, = (4C:,/m) exp (mx) (33) 
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and equations (9) and (10) become 

f”’ + 8” - 2(f’)2 + @ = 0 (34) 

qs” + Pr f 0’ + 4 Pr f’(1 - @) = 0. (35) 

The corres~nding forms for &’ and u are 

exp (5mX/4) eIy 

u = $ = cp,rp,f’ = [*C15)2/m] exp (mX/2) f ‘. 

It is thus seen that similarity solutions for steady 
natural convection from an isothermal surface 
exist when the temperature of the surroundings 
varies either as a power of a linear function of x 
as in the first case or as an exponential function 
of x as above. The resulting equations are, in 
each case, similar but not identical to those for 
the corresponding cases of variable surface 
temperature and isothermal surroundings (Yang 

Cl1). 
Numerical solutions to equations (29) and 

(30) have been obtained for a range of values of 
n, i.e. different distributions of 8,. 

(ii) Steady n~turu~ convection from a non- 
isothermal surface maintained at a constant 
temperature differential with its surroundings 

Here Re = 0 and 0,,,(x) - B,(x) = constant, 
sothatC,=C3=Cq=C.,=Cs=Cs=C1i 
= Ciz = 0 and equations (12), (15), (16) and 
(20) provide the conditions which must be 
satisfied if similarity solutions are to exist. 

The general solution to equations (15) and 
(16) is given by equations (23) and (24) as in the 
previous case, provided E # 1. (It may be easily 
demonstrated that the case E = 1 need not be 
considered as it does not lead to a solution for 
this particular problem.) Substituting equations 
(23) and (24) into equation (12) and requiring 
G, - G, to be constant gives s = -3 and 
CzC,3 = G, - G,. 

Examination of this result shows that except 
for the constant of integration C14, the functions 

cpt and (p2 are identic~ with the corres~nding 
functions occurring in the analysis of steady 
natural convection from an isothermal surface 
in isothermal surroundings. 

We still have to satisfy equation (20) which 
may be rewritten as 

dG, - Cd% - G,) 
dX C&L - (4/C&X1’ 

(36) 

Two cases must now be considered: 

Case (a): C, # 0. In this case we get, 

G, = 

%(G,-G&h L&L-Gm)-4GCsXl - 
4C, 

+ C15 

where C,, is a constant of integration. 
In order that this may be applied to physically 

meaningful problems, G, must remain finite in 
the region of interest. This imposes the following 
mathematical restrictions 

(i) Ci, # 0 

(ii) C,,(G, - G,) > 4C&X for any X. 

A study of the corresponding forms of cpl shows 
that the restrictions have the common interpre- 
tation that the existence of a constant tempera- 
ture differential between a surface and its 
surroundings, is incompatible with the existence 
of a point of zero boundary-layer thickness, 
except for the special case of an isothermal 
surface in isothermal surroundings (C,, = 0). 

When C14 f 0, the boundary-layer has a non- 
zero thickness at X = 0 and the magnitudes of 
the temperature and velocity profiles are speci- 
fied by the value of CL4. 

For this case, equations (9) and (10) reduce to 
the ordinary differential equations 

f”’ + 3@” - 2(f’)2 + Q, = 0 (37) 

W+3PrfQr’--C,,f’=O. (38) 

Because the appearance of C,, in equation 
(38) places a severe restriction on the generality 
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of any solution and because of the limitations 
imposed on Cr4, no numerical solutions of these 
equations have been attempted. 

Case (b): C, = 0. Despite the difficulty in 
interpreting equations (23) and (24) for this case, 
it can be shown that if C5 = 0 is inserted into 
equation (36), the correct form of expression for 
dG,JdX is obtained. 

Thus 

G 
WJ 

= C,,(G, - GJX + c 

C&M 
15 

where Cl5 is a constant of integration. 
This may be rewritten as 

G = c,c,,x 
m 

C 
+ Cl, 

14 

and as before, we are able to assign values to 
two of the constants. It is convenient to set C, 
= C,, = 1. Under these conditions equations 
(9) and (10) reduce to 

f"' + @ = 0 (39) 

and 

W - PY f’ = 0. 

Solutions to equations (39) and (4O), which 
apply to a very special case of a boundary-layer 
having constant thickness, have not been ob- 
tained because that problem was not of direct 
interest in the general context of this work. 

(iii) Other cases of convection to non-isothermal 
surroundings 

A careful study of equations (11-21) shows 
that the conditions imposed by these equations 
are closely related to those which must be 
satisfied in problems with isothermal sur- 
roundings. Equations (11-18) impose the same 
conditions on (G, - G,) as are usually imposed 
on G,. Equations (19) and (20) then impose 
conditions on G, as well. 

As an example, let us consider the case of 
steady natural convection from a non-isothermal 

surface to non-isothermal surroundings, ex- 
cluding the case where G, - G, is constant. 

Similarity solutions are possible for (G, - G,) 
=(A+BX)” and for G,-G,=Ae” pro- 
vided G, also satisfies equation (20) which 
requires that G, = C(A + SXy (for n # 0) in 
one case and G, = Ded in the other case 
(The constants A, B, C and D are used here 
instead of the more complicated forms in- 
volving C5 etc., in order to simplify the dis- 
cussion.) The similarity in the form of (G, - G,) 
(X) and G, (X) results from the similarity of 
equations (17) and (19), and (18) and (20). This 
gives a means of generalizing existing results 
to include cases of non-isothermal surroundings. 
Restrictions previously derived concerning 
allowable variations in surface temperature may 
be used to describe allowable variations in 
temperature difference, surface to surroundings, 
provided that the same conditions are imposed 
on the variations of surrounding temperature 
alone. This generalization may be applied to 
all known similarity solutions for natural con- 
vection (see for example Yang [l], Pau-Chang 
Lu [63, Sparrow and Gregg [7], Eichhom [8], 
etc.) and also to similarity solutions for com- 
bined forced and free convection (see Sparrow, 
Eichhorn and Gregg [9] and Brindley [lo]). 

It should be noted that the resulting ordinary 
differential equations in all these cases will not 
be the same as those for the corresponding 
cases of isothermal surroundings, but will, in 
each case, contain an additional term in the 
“energy” equation. Numerical solutions have 
not been obtained for any of the new equations, 
because practical applications have not yet 
arisen which would justify such work. 

RESULTS AND DISCUSSION 

Numerical solutions of equations (29) and 
(30) have been obtained on the University of 
London Atlas computer, for -0.30 < n < O-6 
and Pr = 0.708 (air). Details of the numerical 
methods used in these solutions and of the 
asymptotic properties of the equations are given 
in Appendix 1. 

68 
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Figures 2-4 show the influence of II on the 
local heat-transfer rate, the temperature profiles 
and the velocity profiles respectively. Because 
of the difficulty of showing fine detail on the 
graphs, the full solutions are tabulated for the 
cases of n = - 0.15 and 12 = - 0.3, in Tables 1 
and 2. 

It should be noted that n < 0 corresponds to 
6, increasing with increasing X while n > 0 
corresponds to 8, decreasing with increasing X. 
The former of these is the more likely to occur 
in practical situations; in fact, the condition 
IZ = 0 (0, = const.) is very rarely achieved, 
although in many cases departures from it are 
small enough to be ignored. Cases of n > 0 may 
not occur in practical situations because this 
would in general represent an unstable situation. 

” 

FIG. 2. The variation of the local heat-transfer rate with the 
temperature gradient outside the boundary layer. 

(e, = Rx” - 8,. 8, = con%, Pr = 0.708) 

Figure 2 shows that for n < 0, the local 
heat-transfer rate is increased as compared with 
n A 0 while for n > 0 it is reduced. This is in 
keeping with the physical picture of the pheno- 
menon. For negative n one would expect that 
at a particular section X, the temperatures at 
all points in the boundary layer would be less 
than would have existed if n had been zero and 
B,,, - 8, had been everywhere equal to its local 
value. This picture is confirmed by the tempera- 
ture and velocity profiles in Figs. 3 and 4. 

4 

0.5 

0.4 

0.3 

02 

0.1 

0 

FIG. 3. The variation of the dimensionless temperature 
profiles with the temperature gradient outside the boundary 

layer. 
(e, = Bx” - 8,. 8, = const., Pr = 0,708) 

0.2 

f’ 

0.1 

C 

FIG. 4. The variation of the dimensionless velocity profiles 
with the temperature gradient outside the boundary layer. 

(e, = BY - e,, 8, = const., Pr = 0.708) 
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Table 1. Theoretical solution n = -0.15, Pr = 0.708 

1855 

9 

oao OOOOOO OOOOOO 
0.50 0.06312 0.21703 
1.00 0.18846 0.26296 
1.50 0.31151 @22080 
2m 0.40539 0.15430 
2.50 0.46734 0.09612 
300 0.50448 0.05537 
3.50 0.52530 0.03012 
4.00 0.53640 0.01568 
4.50 0.54208 0.00786 
500 0.54488 0@0381 
5.50 0.54622 0.00178 
6.00 0.54683 OWO8 1 
6.50 0.547 11 0@0035 
7aO 0.54723 omO14 
7.50 0.54727 OQOOO6 
8.00 0.54729 0~00002 
8.50 0.54730 0~00001 
900 0.54730 0 WOOO 
9.50 0.54730 -O%@OO 

1oaO 0.54730 - 0~00000 
10.50 0.54730 - 0~0OOcKl 
11.00 054729 -0aOOOo 
11.50 0.54729 -O.OOOOO 
12.00 0.54729 -0oOOOo 
12.50 0.54729 O.OOOOO 
1300 0.54729 O+lOOOO 
13.50 0.54729 OQOOCQ 
14.00 0.54729 OQOOOO 
14.50 0.54730 OQOOOO 
1500 0.54730 0~0moO 
15.50 0.54730 0 WOO0 
16.00 0.54730 0 WJOO 
16.50 0.54730 0mOOO 
17a 0.54730 0~0OOOo 
17.50 0.54730 0 WOOO 
1800 0.54730 0~00000 
18.50 0.54730 o~om 
1903 0.54730 O.ooooO 
19.50 054730 -0QOOOO 
20.00 0.54730 -0QOOOO 

f 

0.65949 
0.23471 

- 0.02227 
-012471 
-0.13975 
- 0.09939 
- 006454 
- 0.03810 
-0.02109 
-0.01113 
- 0.00564 
- 0.00277 
-0aO131 
- 0~00060 
- 0.00026 
-0QOO11 
- 0~0coO4 
- oQOOo2 
- 0~0OoOO 
- 0~00000 

oaOOOo 
oaOOOo 
0~00000 
0 WOOtl 
0aOQoO 
omOOo 
O.OOOOO 
OfJOOOO 
0~00000 
O.OOOOO 
0~0OOOo 
OQOOOO 
0~0OOOo 

-00K0O 
- 0~00000 
-0QOOOO 
- 0~00000 
- O~OOOOCl 
- 0~00000 
-0mOOo 
- 0~00000 

1WOOO 
0.72515 
0.47457 
0.27956 
0.15026 
0.07500 
0.03525 
0.01570 
000662 
0.0026 1 
omO93 
0+.)0027 
OmOO4 

- 003002 
- oaOOO3 
- 0~00002 
- oaOoO2 
-0aOGO1 
-0aOOO1 

omOOo 
oaOOOo 
oaOOOo 
oaOOo 
oaOOo 
00XMXl 
oaGoOo 
OOOCOO 
oaOOOo 
0 WOOO 
omOOo 
OQOOOO 
0~0OOOa 
OQOOOO 
OQOOOO 
0~0OOOo 
OWOOO 
O@OOOO 
OJXKKKl 
OJJOGOO 
0~00000 
oaOOOo 

- 0.55423 
-0.53705 
-0.45359 
-0.32318 
-0.19855 
-0.10901 
-0.05515 
- 0.02623 
-0.01184 
- 0.00508 
- 0.00205 
-00X)76 
- 0.00024 
- oaOoO5 

omOO1 
oaOOO2 
oaOOO2 
oalOO1 
0~00001 
OQOOOO 
OOOOOO 
O@OOOO 
OQOOOO 
O.OGQOO 
0 WlOO 
OacQOO 
OaOOOO 
O.OOOOO 
0 WOOO 
OQOOOO 
OWOOO 
OWOOO 
0mOOO 
OOGQOO 
00XlOO 
OWOOO 
0 WOCd 
O.OOOOO 
OQOOOO 
OaOOQO 
0~00000 

Table 1 shows that for n = -0.15, the tem- 
perature in a part of the boundary layer is less 
than that outside the boundary layer. Table 2 
shows that for n = -0.3 the effect is more pro- 
nounced and is sufftcient to cause flow reversal 
in the outer part of the boundary layer as 
indicated by the negative values of f’. 

The physical picture of the phenomena is 

that the rate of heat transfer from the plate to the 
fluid in the outer part of the boundary layer is 
not sufftcient to keep its temperature in step 
with the temperature outside the boundary 
layer, as it moves upwards. 

The possibility that the above described 
temperature minimum, and flow reversal, may 
constitute an unstable condition is suggested 
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rl f f’ 

0.00 OQOOOO 0 WOOO 
0.50 006090 0.20845 
100 0.18034 0.24846 
1.50 0.29536 0.20374 
2.00 0.38072 0.13771 
2.50 0.4349 1 0.08191 
3.00 0.46572 0.04426 
3.50 0.48176 0.02204 
4.00 0.48946 0~01011 
4.50 0.49286 0.00422 
5.00 0.4942 1 oaO153 
5.50 0.49465 oQOO41 
6.00 0.49474 oaJOo2 
6.50 0.4947 1 - oaOOO9 
7.00 0.49467 - omOo9 
7.50 0.49463 - ONIOO6 
8.00 0.49460 - omOO4 
8.50 0.49459 - 0~00002 
900 0.49458 - 0.00001 
9.50 0.49457 - omOOO 

1oaO 0.49457 - omOoo 
10.50 0.49457 - oaOOo 
1100 0.49457 -00MOO 
11.50 0.49457 omOOo 
12aI 0.49457 @00000 
12.50 0.49457 OQOOOO 
13.00 0.49457 OX0OOO 
13.50 0.49457 - O+lOOOO 
14@0 0.49457 - 0~00000 
14.50 0.49457 - oaKIOo 
15aI 0.49457 - omOOo 
15.50 0.49457 -O.OOOOO 
16.00 0.49457 - oaOOOO 
16.50 0.49457 - omOOo 
17aO 0.49457 -O.OOOOO 
17.50 0.49457 -0NKIOO 
1800 0.49457 -O%IOOO 
18.50 0.49457 -OaOaOo 
1900 0.49457 OMNJO 
19.50 0.49457 OQOOOO 
2oao 0.49457 ONKKIO 

R. CHEESEWRIGHT 

Table 2. Theoreticul solution n = -0.3, Pr = 0,708 

f" 

0.64099 
0.21979 

- 0.03083 
-0.12652 
-0.12746 
-0.09355 
- 0.05822 
- 0.03249 
-0.01664 
- 0.00787 
-0aO341 
-0.00131 
- oaKl41 
- 0~00007 

0@0004 
oaOOo5 
0@0004 
0~00003 
oaOOo2 
0~00001 
OQOOOO 
oaOOoo 
OX@OOO 
0~00000 

- oaOOoo 
- oaOOOO 
-0mOOO 
- O@OOOO 
- oaOOoo 
-0N0OO 
-00MOO 
- oaOOOO 
- 0amO 
-O@OOOO 

O%NQOO 
O@OOOfl 
O~OOQOO 
OmOoO 
ONKIOO 
OaOOOO 
O%KKIO 

4 

1aOOOo 
0.70089 
0.43271 
0.23255 
0.10863 
0.04342 
0.01371 
oao211 

- oaO145 
-0aO193 
-0aO150 
- 000096 
- omO55 
- oaOO29 
- odxMI14 
- OQOOO6 
- omOO3 
-0QOOO1 

O+MOOO 
O+MlMl 
ONlOOO 
oaOOOo 
ON0OO 
OXlOOOO 
oamOo 
O+OOOO 
omOOo 
ON)COO 
O+JOOOO 
ONlOOO 
O.OOOOO 
000000 
oaOOOo 
O.OOOOO 
O.ooooO 
O.OOOOO 
OOOOOO 
O+IOOOO 
O.OOOOO 
ONKJOO 
O.OOOOO 

-0.60414 
-0.58180 
- 0.47702 
-0.32119 
-0.18113 
-0.08782 
- 0.03684 
- 0.01282 
- 0.00298 

000037 
000111 
OQOO98 
0~00066 
000039 
000021 
000011 
0~00005 
000002 
000001 
OOOOOO 
0,OOOOO 

-O.OOOOO 
OQOOOO 
O%XIOOO 
OQOOOO 
OQOOOO 
003000 
000000 
OQOOOO 

- o@OOOO 
- 0aOOOO 
-O.OOOOO 
- 0aOOOO 
-O+XIOOO 
- 0aOooO 
-0QOOOO 
-0mOOO 
- 0mOOO 
- 0amO 
- 0aOOOO 

O+N_UXKl 

by experiments in which negative n existed 
(or was suspected). The evidence is all indirect 
and no experiments have yet been carried out 
to check this idea directly. In all cases the 
variation of n was imposed by conditions not 
controlled during the experiment so that the 
condition 8, - 8, = AX” was not satisfied. 
Nonetheless, it is felt that an estimation of the 

effects can be obtained by the representation of 
8, - 0,(X) as AX” in a piecewise manner. 

In experiments reported by Cheesewright 
[2, 163, n was always negative and may have 
been as low as - 0.1 in some cases. The “laminar” 
boundary layer in these experiments almost 
always unsteady. It is believed that the only two 
days during a period of several months on which 
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the boundary layer was steady were character- 
ized by n == 0, but definite evidence on this 
point does not exist. The introduction of 
artificial disturbances into the laboratory, out- 
side the boundary layer, did not appear to 
affect the steadiness in either the steady or the 
unsteady situation. Further details on these 
points are given in [2]. 

These results are in keeping with those re- 
ported by a number of authors who have studied 
boundary-layer flow regimes in closed cavity 
natural convection, (Elder [ll], Carlson [12], 
Gaster and Murgatroyd [13], Watson [14] and 
Hammitt [15]). In all cases it has been reported 
that it is very difficult, or impossible, to obtain 
steady laminar flow. In all cases substantial 
variations of 8, (considering the boundary 
layers on the cell walls) with respect to X 
occurred, and while it is realized that the closed 
cavity imposes more severe conditions with 
regard to stability than a free flow, it is felt 
that the phenomena are generally the same. 

The possibility that unstable flows may occur 
for n less than some particular value, could 
explain the unusual results of Tritton [17] who 
reported a change in the stability of the laminar 
boundary layer due to a change in laboratory 
conditions which he was not able to specify. His 
laboratory was generally similar to that used by 
Cheesewright [2] so that similar values of n 

may have occurred. 
Cheesewright [ 161 has also reported increased 

local heat-transfer rates under conditions for 
which n was known to be negative. The increase 
was always greater than that predicted by the 
laminar steady-state solution. The difference is 
believed to be due to the unsteadiness discussed 
above. 

CONCLUSIONS 

1. Similarity solutions exist for problems of 
laminar natural convection from a plane vertical 
surface in non-isothermal surroundings. The 
conditions for these solutions may be obtained 
by the generalization of conditions for solutions 
in isothermal surroundings. 

2. For the special case of an isothermal surface 
in non-isothermal surroundings (0, - 8, = 
,4X”) with n < 0, a temperature minimum and 
a region of reversed flow occur within the bound- 
ary layer. Experimental evidence suggests that 
this is an unstable situation. 

3. For the above special case, the effect of 
negative n is to increase the local heat-transfer 
rate while positive n decreases it. 
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APPENDIX 

The Numerical Solution and Asymptotic 
Properties of the Dijkential Equations 

(29) and (30) 

The substitution of F(q) = f - f, and G(q) = 
@ into equations (29) and (30), gives for large q 

F”’ + f,(n + 3) F” + G = 0 (41) 

G”+Pr(n+3)f,G’+4nPrF’=O (42) 

since F, G, G’ + 0 as q + co. 
Equation (42) may be written as 

(D + yPr)G = -4nPrF 

where y = fm(n + 3). 
We may thus eliminate G from equation (41) 
and obtain 

[D2(D + y)(D + y Pr) - 4n Pr] F = 0. (43) 

This equation has a solution of the form 

F = f Ai e “‘9 
I 

where tli satisfies 

a2(a + y) (a + y Pr) = 4n Pr. (44) 

For the case Pr = 1 it is easily seen that if 
-3 < n < 0 the roots ai of equation (44) are 
complex. Under these conditions the solution 
to equation (43) will be of a damped oscillatory 
character. The introduction of Pr = 0.7 instead 
of 1 would not significantly alter this result. 

This consideration of the asymptotic be- 
havior of equations (29) and (30) indicates that 
the oscillatory nature of the solutions of these 
equations as shown in Tables 1 and2 is real and 
is not due to numerical error in’the solutions. 

The above conclusions were confirmed by 
the following features noted during the calcula- 
tion of the solutions. 

(i) No oscillations were apparent in solutions 
for n = 0, even when solutions were calculated 
to eight figures, and these results showed com- 
plete agreement with those of Ostrach [4]. 

(ii) The solutions were calculated both by 
Runge-Kutta integration and by iterated inte- 
gration (Weyl’s method) and complete agree- 
ment was found. 

(iii) Changes in the accuracy specification 
which controlled the step size in the self- 
selecting, variable step size, Runge-Kutta pro- 
cedure had no effect on the nature of the results, 
neither had a change in the range of integration. 

Further details of the computational methods 
and comparisons of the relative merits of the 
two methods are given in Cheesewright [2]. 

R&sum&-Cet article presente une etude theorique de la convection naturelle laminaire a partir d’une 
surface plane verticale dans une ambiance non-isotherme. On a obtenu des conditions d’existence de 
solutions en similitude. On propose une methode pour gentraliser les conditions appartenant aux solutions 
en similitude existantes ahn d’y inclure l’effet d’une ambiance non-isotherme. Des solutions numeriques 
des equations differentielles resultant de la transformation de similitude sont don&es dans le cas special 
d’une surface isotherme. Ces rtsultats suggtrent que certaines variations de la temperature ambiante 
peut conduire a un changement de sens de l’tcoulement dans la couche limite. Les indications de 

l’experience suggtrent que ceci peut itre une condition d’instabilitk. 

ZusPmmenfaswng-Es wird eine theoretische Untersuchung der laminaren natiirlichen Konvektion an 
einer ebenen senkrechten Oberfllche in nichtisothermer Umgebung beschrieben. Die Bedingungen fur 
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die Existenz von Ahnlichkeitslosungen werden abgeleitet. Eine Methode wird vorgeschlagen, die Bedin- 
gungen, welche die existierenden AhnlichkeitslWmgen enthalten, so zu verallgemeinern, dass sie den 
Einfluss nichtisothermer Umgebung einschliessen. Numerische Liisungen der gewijhnlichen Differential- 
gleichungen, die sich als jihnlichkeitstransformation ergeben werden fur den Spezialfall einer isothermen 
Oberflache angegeben. Diese Ergebnisse zeigen, dass iinderungen in der Umgebungstemperatur zur 
Striimungsumkehr in der Grenzschicht fiihren konnen. Versuchsergebnisse deuten darauf hin, dass dies 

eine instabile Bedingung darstellt. 

hEOT8l(liJX-npOBe#?HO TeOp3TUWCKOe UCCJW~OB3HUe JEiMUHapHOltl WYWTBeHHO& KOHBeK- 

UUU OT IIJlOCK0i-i BepTUKWIbHOti IlOBepXHOCTU B HeU3OTepMUWCKyIO OKpj%WOllQ'lO Cpeny. 

Hatiaenu JWJIOBUH Cy~eCTBOBEiHUR 3BTOYOReJIbHbIX peUIeHU8. r@eAJIOHWH M~TOA 06- 
o6menan YCJlOBUti CJ'~eCTBOB3HHFl ElBTOMO~3~bHbIX PeIIIeHUti HJIR J'WTa BJIURHUR HeU3OTf.?p- 

MUYWKUX YCJldBUt. %CJEHHble peIlEHUH 06bIKHOBfL?HHbIX ~U@fIep3H~U3JIbHbIX J'paBHt?HUi, 

IIOJlyYeHHble B p33yJlbT3Te 3BTOMO~t?JlbHbIXItp306p33OB3HUtf,OIIUC3HbIJ.(JIR WCTHOrO CJIy'iaFi 

U3OTepMUWCKOt IIOBepXHOCTU. YCTaHOBJWHO, 9TO JJJIU HeKOTOphlX 33KOHOB U3MeHeHUII 

OKpJVKHaIOUJe~ TeMIIepaTypEd B03MOWHbI BO3BpaTHble ~BUHteHUH ENAKOCTU B IIOrp3HUVHOM 

CJIOe. aKCIlepUMeHT3JIbHbR @IHHbIe IIOH33bIBEGOT, ST0 3TO MOH(eT 6bITb CJIeJJCTBUeM IWJJpO- 

~UHEiMUWCKOit HeyCTOtWiBOCTU. 


