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Abstract—This paper presents a theoretical investigation of laminar natural convection from a plane,

vertical surface in non-isothermal surroundings. Conditions are derived for the existence of similarity solu-

tions. A method is proposed for generalizing the conditions pertaining to existing similarity solutions so

as to include the effect of non-isothermal surroundings. Numerical solutions of the ordinary differential

equations resulting from the similarity transformation are reported for the special case of an isothermal

surface. These results suggest that some variations of surrounding temperature may lead to flow reversal
in the boundary layer. Experimental evidence suggests that this may be an unstable condition.
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NOMENCLATURE

constants;

specific heat capacity;
dimensionless similarity stream
function (= ¥/¢,);

specific gravitational force;
dimensionless temperature (=
gpL (0 — B)/v);

thermal conductivity;
characteristic length ;

constant parameters;

Nusselt number (= Q" L/k AB);
pressure;

Prandtl number (= uC,/k);
heat-transfer rate per area;

free stream Reynolds number
(=UxL/v);

absolute temperature ;

time ;

dimensionless time (= vt/I?);
velocity in the x direction;
velocity in the y direction ;
distance along the plate;

t Lecturer in Mechanical Engineering at Queen Mary
College University of London. (Presently on leave in the
Department of Nuclear Engineering, University of Michigan,

USA).

Greek symbols
B.

&,
1,

6,
H
v,
P,

D1, P2,
o,

7,

Q,

Subscripts
w,

1847

dimensionless distance along
the plate (=x/L);

distance normal to the plate;
dimensionless distance normal
to the plate (=y/L).

coefficient of cubical expansion ;
constant parameter;
independent similarity variable
(=Yq,);

temperature;

viscosity;

kinematic viscosity ;

density;

unknown functions;
dimensionless similarity tem-
perature function [ =(G — G )/

(Gw — GL)1;

stream function (u = dy/dy,v =
— Oy/ox);

dimensionless stream function
(=y/v);

body force term in boundary-
layer equation.

conditions on the surface of the
heated plate ;
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o0, conditions outside the boundary
layer;
0, an arbitrary reference condition.
Superscripts
', the prime is used to indicate

differentiation with respect to
the independent variable,

INTRODUCTION

FoLLowiNG the work of Yang[l], it has been
suggested that all the “exact” similarity solu-
tions for the above problem have been explored.
However, during a recent experimental in-
vestigation (Cheesewright [2, 16]), it became
apparent that existing solutions, which are all
concerned with isothermal surroundings, did
not provide a satisfactory description of the
experimental phenomena.

A study of the problem revealed a new class
of solutions for non-isothermal surroundings.
The derivation of these solutions and the
numerical results arising from them are con-
sidered in this paper. The form of temperature
variation in the surroundings considered is that
in which the temperature far away from the
heated plate is a function of x, the distance from
the leading edge.

The procedure adopted by Yang [1] for the
determination of the similarity transformation
is followed closely, and after detailed examina-
tion of two cases of special interest, a way of
generalizing the results of Yang [1] to include
cases of non-isothermal surroundings is pro-
posed.

It is believed that the results for the special
case of an isothermal surface in non-isothermal
surroundings have important applications in
the experimental study of transition to turbu-
lence in natural convection on a plane vertical
surface. The results in general make possible the
consideration of natural convection from an
isolated surface in a cavity of limited extent, and
may also facilitate the study of the boundary-
layer regimes in natural convection in closed
cavities. A qualitative study of the effects of a
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vertical temperature gradient outside the bound-
ary layer in the closed cavity problem has been
made by Schwind and Vliet [3].

ANALYSIS

With respect to the coordinate system, Fig. 1,
the equations of momentum, continuity and
energy which govern the flow and heat transfer
in a laminar boundary layer in the presence of a
body force are respectively

53—lf+ua—u+u§l~‘——ldP%—Q+ ou
ot 0x &  pdx vé?
(1
du v
00 a6 a0 k 0%0
(3)

with the appropriate boundary conditions.
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FiG. 1. Coordinate system.

If consideration is restricted to a region of
plate (which may or may not include the leading
edge), having a temperature everywhere greater
than, or equal to that of its surroundings, we
can write @ = — g. It should be noted that for
cases in which 8,, — 6, decreases with distance
up the plate, the above restrictions lead to the
consideration of a region of limited extent rather
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than the semi-infinite region usually considered
in boundary-layer problems. At no time, how-
ever, will consideration be given to effects due
to a region having a trailing edge.
Outside the boundary layer
Ou,, ou 1 dP

—_ Uu _2_}____
ot + ©0x  pydx

(for pure natural convection u,, = 0).

+g=0 4

Fliminating dP/dx between equations (1) and

4), we get
oy O Y (e T
Plas "% T Pay) T P\ T Moo
0*u

—glp — po) + Ha2 5

Following Ostrach [4], property variations
are assumed to be important only in so far as
they affect the body force term, and the density
variation is represented by

p = po[l — BO — 6,)].

Where p, is the density at an arbitrary reference
temperature, 8,, and § = constant (1/T; for a
perfect gas).

These considerations allow us to rewrite
equation (5) as
ou Ou du

+ + _ Ouy,
o T " ax "ay‘ ot

ouy,

S
*u
+ 9B — 0,) + Va2 (6)

provided (0 — 6,) < Ty,

Equations (2, 3, 6) govern the flow which we
wish to investigate, subject to the following
boundary conditions

at y=0 u=v=0 and 0=10,x,1)

at y=w u=uy(x,t) and @=0,(x,1).

It may be noted that equation (6) is identical
with the corresponding equation for the case
0, = constant. The above derivation has been
given because it is not felt that this identity is
obvious.
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Introducing the stream function ¥, [which
satisfies equation (2)], equations (6) and (3)
become

Py WY N Oun Gus
dyot ' 8y oxdy Ox 0y> Ot * ox
63
+gB6—0)+v—= (7
dy
W, w ww_ kd
ot dydx 9xdy pC,oy*

It is convenient to make these equations
dimensionless by writing X = x/L, Y = y/L,
¥ =y, Re=u, Ly, G=Bgl36 — 0,/
G, = BgL(0,, — 0,)/v* and t* = vt/I* where L
is a characteristic length.

Equations (7) and (8) now become

Y VT WPV _Re | Re
Jyot* = 0y 0xdy Ox 0y*  Ot* 0x
+6-6,+22
© ey

G WG _2¥IG_ 175G
ot* ' 9YoX 0X9Y Proy?

where Pr = uC,/k.
In order to determine the necessary conditions

for the existence of similarity solutions, we
follow Yang [1] and introduce the new variables

n =YX, ¥
fn) = ¥lo X, %)
() = (G — GG, — Go)
where G, = BgL3(0,, — 6,)/v>.

The required conditions are those which
enable the introduction of the new variables to
transform equations (9) and (10) into ordinary
differential equations together with appropriate
boundary conditions.

In terms of the new variables the boundary
conditions become

d=1 at n=0,
f=dffdy =0 at =0,
df/dn = Re/o,p, at

(10)

¢=0 at n=o0

7= 0.
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Since the new boundary conditions must be
independent of X and t* we must have

= constant = C,. (11)

P19,
The conditions for equations (9) and (10) to
transform into ordinary differential equations
may be seen, by comparison with the problem
treated in Yang [1], to be given by

%q)zim): C, (12)

%%1 é - ¢, (13)
%%zqoflfpz -G 1

g;;% - C, (15)

a(Gw(?t_* Go) o IGOO) =C ()
6(Gwa)—( G,) & _qoéw)(pl =Cs (18)
6;: G — 1G(,D) e )
PR ara

where the C’s are all constants

Since, in general, we have twelve equations
imposing conditions on five quantities, there are
seven relations between the constants. These are :

C3Cs = — C4Cs
C3C6 = 2C4C5 + C4C6
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C,=3C; + C,

Cs =3Cs + Cg
4C4Cyy = 5C4Cs + CoCy
Cy1 = CHCs + Cy)

Ci2 = Ci(C3 + Cy).

At this point it is desirable to consider the
relationship between the present work and that
contained in Yang [1] and other related
publications.

The work of Yang [1] and, indeed, all other
theoretical treatments of laminar natural con-
vection from a plane surface in an infinite
medium, known to the author, are concerned
with convection from a surface in isothermal
surroundings. The present investigation deals
with convection from a surface in surroundings
in which the temperature is a function of the
distance along the plate and of time. Now it
might be supposed that, as for forced con-
vection (e.g. Hansen [5]), only the difference in
temperature between the surface and the sur-
roundings is important. However, this is not the
case in problems of natural convection, because
of the appearance of 6, in the body force term
in the momentum equation.

It should be noted that the present work
includes all cases treated previously, including
those of Yang [1]. This is demonstrated by
putting G, = const. and Re = 0 in equations
(11-22), and writing G} = G, — G, when
these equations become identical to equations
(16-22) in Yang [1].

Two cases are of particular interest, viz.
steady natural convection, (a) from an iso-
thermal surface in non-isothermal surroundings ;
(b) from a non-isothermal surface maintained at
a constant temperature differential with its
surroundings.

PARTICULAR CASES

(i) Steady natural convection from an isothermal
surface in non-isothermal surroundings
In this case Re = 0, ,, = const,, 0, = 6,(x)
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andhence C, =C;=C,=C,=Co=Cy, =

C,; = 0 and Cg = — Cy,. Equations (12), (15),

(16) and (18) determine the conditions which

are imposed on ¢,, ¢, and G. A study of the

general solutions to equations (15) and (16)

shows that two cases must now be considered.
Case (a): C4/Cs + 1. Here

@, = [Cy4 + (Cs/Cy3)e — I)X]l/(a—l)

(23)
@, = C13[Cs + (Cs/CyaXe — XD
(24)
and
Gw - Goo = C2C13[C14
+ (Cs/Cya)e — DX ]+ (25)

where ¢ = C¢/Cs and C;3 and C,, are con-
stants of integration.

Since G, — G, is the quantity which is
specified in any particular case, and since there
can only be three independent constants in this
problem, we are at liberty to specify two of the
constants in equation (25) provided we retain
the most general form. It is most convenient to
write C, = 1 and Cs(e — 1) = 4.

If we also write n= (¢ + 3)/(¢ — 1) then
equations (23-25) become

@1 = [C1q + (4/Cy5)X ] 04 (26)
@, = C3[Cyq + (4/C3)X]"* WE 21
G, — G, = C13[Cia + 4/C13)X]. (28)

It may be easily demonstrated that the above
specification of Cs may be rewritten as C5 =n
— 1 and that this implies that C¢ = n + 3 and
Cg = 4n and has the additional advantage that
it enables the special case of Cs =0 to be
retained in the general solution.

Under these conditions, equations (9) and
(10) reduce to

f"+@+3y " —2m+ 1)) +®=0
(29)

& + Pr(n+3)f& +4nPrf'(1 —®)=0
(30)
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where the prime indicates differentiation with
respect to #. These equations, together with the
appropriate boundary conditions, may be solved
numerically.

Of particular interest are the heat-transfer
rate from the surface and the component of
velocity parallel to the surface.

B 06 kv?
- - H{3). = gpte

+ (4/C1X]O V4 @,

0
“=a_‘/j=(P1(P2f'
y

= Cy;3[Cq + (4/Cy )X ]+ 2 17,

Expressing the heat-transfer rate in dimension-
less form in terms of the Nusselt number, we
obtain

l/x
N“=k<ew—ow)=[

gho, — 0 )C T x
v2Cy; ] L
@,
*“[Cre + G/CXT*

If C,, = 0 this reduces to
Nu = (Gn)* ¢, /(2)*

where Gr = gf(0,, — 0.)x*/v*

The condition C,, = 0 corresponds to the
boundary-layer having zero thickness at x = 0
and it is noted that, except for the special case of
G, — G, = constant (n = 0), zero boundary-
layer thickness must always coincide with G,, —
G, = 0 for similarity solutions to exist.

Case (b): C¢/Cs=1. Here ¢, =C;5 o,
¢, =Ci6 exp (CsX/Cy5) and G, — G, =
C,C,5Ct6 exp (4C5X/C,5) where C,5 and C,¢
are constants of integration. By the same argu-
ment as in case (a) wecanset C, = land C5 = 1
which implies that C¢ =1 and Cg = 4. If we
also write m = 4/C, 5 then

@, = Cy6exp (mX/4) €2y
@2 = (4C;¢/m) exp (mX/4) (32)
G, — G, = (4Cis/m)exp(mX)  (33)
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and equations (9} and (10) become
"+ =AY +@=0 (34)
" +Prfd +4Prf(1—d) =0 (35

The corresponding forms for Q" and u are

v _ %
B k(ff‘Y)

0

u= 5 = 010:f' = [4C15m] exp (mX)2)
It is thus seen that similarity solutions for steady
natural convection from an isothermal surface
exist when the temperature of the surroundings
varies either as a power of a linear function of x
as in the first case or as an exponential function
of x as above. The resulting equations are, in
each case, similar but not identical to those for
the corresponding cases of variable surface
temperature and isothermal surroundings (Yang
[1)).

Numerical solutions to equations (29) and
(30) have been obtained for a range of values of
n, ie. different distributions of 4.

e LHCL ]

exp (SmX/4) &,

(i} Steady natural convection from a non-
isothermal surface maintained at a constant
temperature differential with its surroundings

Here Re = 0 and 6,(x) — 8,(x) = constant,
sothat C, = C3=C,=C;=Cg=Cyg=Cy,
= C;, = 0 and equations (12), (15), {16) and
(20) provide the conditions which must be
satisfied if similarity solutions are to exist.

The general solution to equations (15) and
(16) is given by equations (23) and (24) as in the
previous case, provided ¢ # 1. (It may be easily
demonstrated that the case ¢ = 1 need not be
considered as it does not lead to a solution for
this particular problem.) Substituting equations
(23) and (24) into equation (12} and requiring
G, — G, to be constant gives ¢ = —3 and
C,Ci3 =G, — G,

Examination of this result shows that except
for the constant of integration C, ,, the functions
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¢, and @, are identical with the corresponding
functions occurring in the analysis of steady
natural convection from an isothermal surface
in isothermal surroundings.

Wea ctill hava n antiof: PRSP o T2 VR 1

W< Sl 11aVe 0 satisty equation (£ZU) which
may be rewritten as

dGco - CIO(GW - Gco)
dX  Cy5[Cia — @W/C5)XT

(36)

Two cases must now be considered:
Case (a): Cs = 0. In this case we get,
G, =

_ G106y =G In[C14(G,— G ) —4C,C5X]
4C;

+ Cys

where C,; is a constant of integration.

In order that this may be applied to physically
meaningful problems, G, must remain finite in
the region of interest. This imposes the following
mathematical restrictions

HC,#0
(i) C,4(G,, — G,) > 4C,CsX for any X.

A study of the corresponding forms of ¢, shows
that the restrictions have the common interpre-
tation that the existence of a constant tempera-
ture differential between a surface and its
surroundings, is incompatible with the existence
of a point of zero boundary-layer thickness,
except for the special case of an isothermal
surface in isothermal surroundings (C,, = 0).

When C,, # 0, the boundary-layer has a non-
zero thickness at X = 0 and the magnitudes of
the temperature and velocity profiles are speci-
fied by the value of C,,.

For this case, equations (9) and (10} reduce to
the ordinary differential equations

fm+3_ﬁ‘"'“2(f,)2 + P =0
@& +3Prf® —C,of =0.

37
(38)

Because the appearance of C,o in equation
(38) places a severe restriction on the generality
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of any solution and because of the limitations
imposed on C,,, no numerical solutions of these
equations have been attempted.

Case (b): C5 = 0. Despite the difficulty in
interpreting equations (23) and (24) for this case,
it can be shown that if C; = 0 is inserted into
equation (36), the correct form of expression for
dG,/dX is obtained.

Thus

_ CXO(GW - Goo)X

Gy
C13C14

+ Cys

where C, is a constant of integration.
This may be rewritten as

and as before, we are able to assign values to
two of the constants. It is convenient to set C,
= Cyo = 1. Under these conditions equations
(9) and (10) reduce to

f“+®=0 (39)

and

&' — Prf' =0. (40)
Solutions to equations (39) and (40), which
apply to a very special case of a boundary-layer
having constant thickness, have not been ob-
tained because that problem was not of direct
interest in the general context of this work.

(iii) Other cases of convection to non-isothermal
surroundings

A careful study of equations (11-21) shows
that the conditions imposed by these equations
are closely related to those which must be
satisfied in problems with isothermal sur-
roundings. Equations (11-18) impose the same
conditions on (G,, — G,) as are usually imposed
on G,. Equations (19) and (20) then impose
conditions on G, as well.

As an example, let us consider the case of
steady natural convection from a non-isothermal

6B
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surface to non-isothermal surroundings, ex-
cluding the case where G,, — G, is constant.

Similarity solutions are possible for (G,, — G,)
= (A + BX) and for G, — G, = Ae™ pro-
vided G, also satisfies equation (20) which
requires that G, = C(4 + BXY (for n + 0) in
one case and G, = De™ in the other case
(The constants 4, B, C and D are used here
instead of the more complicated forms in-
volving C; etc, in order to simplify the dis-
cussion.) The similarity in the form of (G,, — G )
(X) and G, (X) results from the similarity of
equations (17) and (19), and (18) and (20). This
gives a means of generalizing existing results
to include cases of non-isothermal surroundings.
Restrictions previously derived concerning
allowable variations in surface temperature may
be used to describe allowable variations in
temperature difference, surface to surroundings,
provided that the same conditions are imposed
on the variations of surrounding temperature
alone. This generalization may be applied to
all known similarity solutions for natural con-
vection (see for example Yang [1], Pau-Chang
Lu [6], Sparrow and Gregg [7], Eichhorn [8],
etc.) and also to similarity solutions for com-
bined forced and free convection (see Sparrow,
Eichhorn and Gregg [9] and Brindley [10]).

It should be noted that the resulting ordinary
differential equations in all these cases will not
be the same as those for the corresponding
cases of isothermal surroundings, but will, in
each case, contain an additional term in the
‘“energy” equation. Numerical solutions have
not been obtained for any of the new equations,
because practical applications have not yet
arisen which would justify such work.

RESULTS AND DISCUSSION

Numerical solutions of equations (29) and
(30) have been obtained on the University of
London Atlas computer, for —0-30 < n < 06
and Pr = 0-708 (air). Details of the numerical
methods used in these solutions and of the
asymptotic properties of the equations are given
in Appendix 1.
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Figures 24 show the influence of n on the
local heat-transfer rate, the temperature profiles
and the velocity profiles respectively. Because
of the difficulty of showing fine detail on the
graphs, the full solutions are tabulated for the
cases of n = —015 and n = —0-3, in Tables 1
and 2.

It should be noted that n < 0 corresponds to
0, increasing with increasing X while n > 0
corresponds to 0, decreasing with increasing X.
The former of these is the more likely to occur
in practical situations; in fact, the condition
n=0 (0, =const) is very rarely achieved,
although in many cases departures from it are
small enough to be ignored. Cases of n > 0 may
not occur in practical situations because this
would in general represent an unstable situation.
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F1G. 2. The variation of the local heat-transfer rate with the
temperature gradient outside the boundary layer.
6, = Bx"—0,, 8, = const, Pr=0708)

Figure 2 shows that for n < 0, the local
heat-transfer rate is increased as compared with
n = 0 while for n > 0 it is reduced. This is in
keeping with the physical picture of the pheno-
menon. For negative n one would expect that
at a particular section X, the temperatures at
all points in the boundary layer would be less
than would have existed if n had been zero and
8, — 0, had been everywhere equal to its local
value. This picture is confirmed by the tempera-
ture and velocity profiles in Figs. 3 and 4.
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Fi1G. 3. The variation of the dimensionless temperature
profiles with the temperature gradient outside the boundary
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F1G. 4. The variation of the dimensionless velocity profiles
with the temperature gradient outside the boundary layer.
8, = Bx"—6,, 0, =const, Pr=0708)
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Table 1. Theoretical solutionn = —0-15, Pr = 0-708

n f I v 2 @
0-00 0-00000 0-00000 0-65949 1-00000 —0-55423
0-50 0-06312 021703 0-23471 0-72515 —0-53705
1-00 0-18846 0-26296 —0-02227 047457 —0-45359
1-50 0-31151 0-22080 —0-12471 0-27956 —-0-32318
2:00 0-40539 0-15430 —0-13975 0-15026 —0-19855
2:50 046734 0-09612 —0-09939 0-07500 —0-10901
3-00 0-50448 0-05537 —0-06454 003525 —0-05515
3:50 0-52530 003012 —0-03810 0-01570 —002623
4-00 0-53640 0-01568 —0-02109 0-00662 —001184
4-50 0-54208 0-00786 —0-01113 0-00261 —0-00508
500 0-54488 0-00381 —0-00564 0-00093 —0-00205
550 0-54622 0-00178 —0-00277 0-00027 —0-00076
600 0-54683 0-00081 —0:00131 0-00004 —0-00024
6-50 0-54711 0-00035 —0-00060 —0-00002 —0-00005
7-00 0-54723 0-00014 —0-00026 —0-00003 0-00001
7-50 0-54727 0-00006 —0:00011 —0-00002 0-00002
800 0-54729 0-00002 —0-00004 —0-00002 0-00002
8-50 0-54730 0-00001 —0-00002 —0-00001 0-00001
9:00 0-54730 0-00000 —0-00000 —0-00001 0-00001
9-50 0-54730 —0-00000 —0-00000 0-00000 0-00000
10-00 0-54730 —0-00000 0-00000 0-00000 0-00000
10-50 0-54730 —0-00000 0-00000 0-00000 0-00000
11-00 0-54729 —0-00000 0-00000 0-00000 0-00000
11-50 0-54729 —0-00000 0-00000 0-00000 0-00000
12-:00 0-54729 —0-00000 0-00000 0-00000 0-00000
12-50 0-54729 0-00000 0-00000 0-00000 0-00000
13:00 0-54729 0-00000 0-00000 0-00000 0-00000
13-50 0-54729 0-00000 0-00000 0-00000 0-00000
14-00 0-54729 0-00000 0-00000 0-00000 0-00000
14-50 0-54730 0-00000 0-00000 0-00000 0-00000
15-00 0-54730 0-00000 0-00000 0-00000 0-00000
15-50 0-54730 0-00000 0-00000 0-00000 0-00000
16-00 0-54730 0-00000 0-00000 0-00000 0-00000
16-50 0-54730 0-00000 —0-00000 0-00000 0-00000
17-00 0-54730 0-00000 —0-00000 0-00000 0-00000
17-50 0-54730 0-00000 —0-00000 0-00000 0-00000
18-00 0-54730 0-00000 —0-00000 0-00000 0-00000
18:50 0-54730 0-00000 —0-00000 0-00000 0-00000
19-00 0-54730 0-00000 —0-00000 0-00000 0-00000
19-50 0-54730 —0-00000 —0-00000 0-00000 0-00000
20-00 0-54730 — 000000 —0-00000 0-00000 0-00000

Table 1 shows that for n = —0-15, the tem-
perature in a part of the boundary layer is less
than that outside the boundary layer. Table 2
shows that for n = —0-3 the effect is more pro-
nounced and is sufficient to cause flow reversal
in the outer part of the boundary layer as
indicated by the negative values of f.

The physical picture of the phenomena is

that the rate of heat transfer from the plate to the
fluid in the outer part of the boundary layer is
not sufficient to keep its temperature in step
with the temperature outside the boundary
layer, as it moves upwards.

The possibility that the above described
temperature minimum, and flow reversal, may
constitute an unstable condition is suggested
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Table 2. Theoretical solution n = —0-3, Pr = 0:708

n f f I’ 2 @
0-00 0-00000 0-00000 0-64099 1-00000 —0-60414
0-50 0-06090 0-20845 0-21979 0-70089 —0-58180
1-00 0-18034 0-24846 —0-03083 0-43271 —047702
1-50 0-29536 0-20374 —0-12652 0-23255 —0-32119
2:00 0-38072 013771 —0-12746 0-10863 —0-18113
2:50 0-43491 0-08191 —0-09355 0-04342 —0-08782
3-00 0-46572 0-04426 —0-05822 0-01371 —0-03684
3-50 0-48176 0-02204 —0-03249 0-00211 —0-01282
4-00 0-48946 0-01011 —0-01664 —0-00145 —0-00298
4-50 0-49286 0-00422 —0-00787 ~0-00193 0-00037
500 049421 0-00153 —0:00341 —0-00150 0-00111
550 0-49465 0-00041 —0-00131 — 000096 0-00098
600 049474 0-00002 —0-00041 —0-00055 0-00066
6-50 0-49471 —0-00009 —0-00007 —0-00029 0-00039
7-00 0-49467 —0-00009 0-00004 —0-00014 0-00021
7-50 0-49463 —0-00006 0-00005 —0-00006 0-00011
8:00 0-49460 —0-00004 0-00004 —0-00003 0-00005
850 0-49459 —0-00002 0-00003 —0-00001 0-00002
9-00 049458 —0-00001 0-00002 0-00000 0-00001
9-50 0-49457 — 0-00000 0-00001 0-00000 0-00000
10-00 0-49457 —0-00000 0-00000 0-00000 0-00000
10:50 0-49457 -—0-00000 0-00000 0-00000 —(0-00000
11-00 0-49457 —0-00000 0-00000 0-00000 0-00000
11-50 0-49457 0-00000 0-00000 0-00000 0-00000
12:00 0-49457 0-00000 —0-00000 0-00000 0-00000
12:50 0-49457 0-00000 —0-00000 0-00000 0-00000
13-00 049457 0-00000 —0-00000 0-00000 0-00000
13:50 0-49457 —0-00000 —0-00000 0-00000 0-00000
14-00 0-49457 —0-00000 —0-00000 0-00000 0-00000
14-50 0-49457 —0-00000 —0-00000 0-00000 ~0-00000
15:00 0-49457 —0-00000 —0-00000 0-00000 —0-00000
15-50 0-49457 —0-00000 —0-00000 0-00000 —0-00000
16-00 0-49457 —0-00000 -0-00000 0-00000 - 0-00000
16-50 0-49457 —0-00000 —0-00000 0-00000 —0-00000
17-00 049457 —0-00000 0-00000 0-00000 —0-00000
17-50 0-49457 —0-00000 0-00000 0-00000 —0-00000
18-00 0-49457 —0-00000 0-00000 0-00000 —0-00000
18-50 049457 —0-00000 0-00000 0-00000 — 000000
19-00 0-49457 0-00000 0-00000 0-00000 ~0-00000
19-50 0-49457 0-00000 0-00000 0-00000 —0-00000
20-00 0-49457 0-00000 0-00000 0-00000 0-00000

by experiments in which negative n existed
(or was suspected). The evidence is all indirect
and no experiments have yet been carried out
to check this idea directly. In all cases the
variation of n was imposed by conditions not
controlled during the experiment so that the
condition 6, — 8, = AX" was not satisfied.
Nonetheless, it is felt that an estimation of the

effects can be obtained by the representation of
0, — 0.(X) as AX" in a piecewise manner.

In experiments reported by Cheesewright
[2, 16], n was always negative and may have
been as low as —0-1 in some cases. The “‘laminar”
boundary layer in these experiments almost
always unsteady. It is believed that the only two
days during a period of several months on which
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the boundary layer was steady were character-
ized by n=0, but definite evidence on this
point does not exist. The introduction of
artificial disturbances into the laboratory, out-
side the boundary layer, did not appear to
affect the steadiness in either the steady or the
unsteady situation. Further details on these
points are given in [2].

These results are in keeping with those re-
ported by a number of authors who have studied
boundary-layer flow regimes in closed cavity
natural convection, (Elder [11], Carlson [12],
Gaster and Murgatroyd [13], Watson [14] and
Hammitt [15]). In all cases it has been reported
that it is very difficult, or impossible, to obtain
steady laminar flow. In all cases substantial
variations of 6, (considering the boundary
layers on the cell walls) with respect to X
occurred, and while it is realized that the closed
cavity imposes more severe conditions with
regard to stability than a free flow, it is felt
that the phenomena are generally the same.

The possibility that unstable flows may occur
for n less than some particular value, could
explain the unusual results of Tritton [17] who
reported a change in the stability of the laminar
boundary layer due to a change in laboratory
conditions which he was not able to specify. His
laboratory was generally similar to that used by
Cheesewright [2] so that similar values of n
may have occurred.

Cheesewright [ 16] has also reported increased
local heat-transfer rates under conditions for
which n was known to be negative. The increase
was always greater than that predicted by the
laminar steady-state solution. The difference is
believed to be due to the unsteadiness discussed
above.

CONCLUSIONS
1. Similarity solutions exist for problems of
laminar natural convection from a plane vertical
surface in non-isothermal surroundings. The
conditions for these solutions may be obtained
by the generalization of conditions for solutions
in isothermal surroundings.
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2. For the special case of an isothermal surface
in non-isothermal surroundings (0, — 0, =
AX"™ with n < 0, a temperature minimum and
a region of reversed flow occur within the bound-
ary layer. Experimental evidence suggests that
this is an unstable situation.

3. For the above special case, the effect of
negative n is to increase the local heat-transfer
rate while positive n decreases it.
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APPENDIX

The Numerical Solution and Asymptotic
Properties of the Differential Equations
(29) and (30)

The substitution of F(n) = f — £, and G() =
@ into equations (29) and (30), gives for large 5

F'+ fn+3)F +G=0 (41
G'+Pr(in+3)f,G +4nPrF =0 (42)

since F, G, G' > 0 as n — o0.
Equation (42) may be written as

(D+yPr)G= —4nPrF

where y = f(n + 3).
We may thus eliminate G from equation (41)
and obtain

[DXD + y)D + y Pr) — 4nPr]F = 0. (43)

R. CHEESEWRIGHT

This equation has a solution of the form
F = iAi e "
where o, satisfies 1
o*(@ + ) (@ + y Pr) = 4n Pr. (44)

For the case Pr =1 it is easily seen that if
—3 < n <0 the roots «; of equation (44) are
complex. Under these conditions the solution
to equation (43) will be of a damped oscillatory
character. The introduction of Pr = 0-7 instead
of 1 would not significantly alter this result.

This consideration of the asymptotic be-
havior of equations (29) and (30) indicates that
the oscillatory nature of the solutions of these
equations as shown in Tables 1 and,2 is real and
is not due to numerical error in-the solutions.

The above conclusions were confirmed by
the following features noted during the calcula-
tion of the solutions.

(i) No oscillations were apparent in solutions
for n = 0, even when solutions were calculated
to eight figures, and these results showed com-
plete agreement with those of Ostrach [4].

(i) The solutions were calculated both by
Runge-Kutta integration and by iterated inte-
gration (Weyl’s method) and complete agree-
ment was found.

(iii) Changes in the accuracy specification
which controlled the step size in the self-
selecting, variable step size, Runge-Kutta pro-
cedure had no effect on the nature of the results,
neither had a change in the range of integration.

Further details of the computational methods
and comparisons of the relative merits of the
two methods are given in Cheesewright [2].

Résumé—Cet article présente une étude théorique de la convection naturelle laminaire a partir d’une
surface plane verticale dans une ambiance non-isotherme. On a obtenu des conditions d’existence de
solutions en similitude. On propose une méthode pour généraliser les conditions appartenant aux solutions
en similitude existantes afin d’y inclure D’effet d'une ambiance non-isotherme. Des solutions numériques
des équations différentielles résultant de la transformation de similitude sont données dans le cas spécial
d’une surface isotherme. Ces résultats suggérent que certaines variations de la température ambiante
peut conduire 4 un changement de sens de I'écoulement dans la couche limite. Les indications de
I'expérience suggérent que cect peut &tre une condition d’instabilité.

Zuosammenfassung—Es wird eine theoretische Untersuchung der laminaren natiirlichen Konvektion an
einer cbenen senkrechten Oberfliche in nichtisothermer Umgebung beschrieben. Die Bedingungen fiir
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die Existenz von Ahnlichkeitslosungen werden abgeleitet. Eine Methode wird vorgeschlagen, die Bedin-

gungen, welche die existierenden Ahnlichkeitslosungen enthalten, so zu verallgemeinern, dass sie den

Einfluss nichtisothermer Umgebung einschliessen. Numerische Losungen der gewohnhchen Differential-

gleichungen, die sich als Ahnlichkeitstransformation ergeben werden fiir den Spezialfall einer isothermen

Oberfliche angegeben. Diese Ergebnisse zeigen, dass Anderungen in der Umgebungstemperatur zur

Strémungsumkehr in der Grenzschicht fithren kénnen. Versuchsergebnisse deuten darauf hin, dass dies
eine instabile Bedingung darstellt.

Anmnoraiua—IIpoBefeHo TeopeTHueCKoe HCCIEeH0BAHNE JAMUHAPHON eCTeCTBeHHON KOHBEK-
LU{HA OT IUIOCKOW BEPTHHKANBHON IOBEPXHOCTH B HEM30TEPMHUUYECKYI0 OKPYKAIYIO Cpexy.
HaligeHs ycaoBMA cymecTBOBaHMA aBTOMOZENbHHX peureHuil. Iipemmo:ken Mertom o6-
o0uieHuA yCHOBMl CylUIECTBOBAHHA ABTOMOMEIbHEX pelIeHNH A yYeTa BIUAHUA HEM30TEp-
MHYecKHX ycioBuit. Unciensbe pemieHA OCGHKHOBEHHHX NuPepeHUMATbHRX yPABHEHHUH,
MOJy4YeHHHE B Pe3yAbLTaTe aBTOMOJEIbHHNX NpeofpasoBanuil, OIMCAHN JJIA YaCTHOTO CIyYasd
HBOTEPMMYECKON IIOBEPXHOCTH. YCTAHOBJIEHO, YTO [JIAd HEKOTOPHX BaKOHOB H3MEHEHHS
OKpYaollieit TeMIepaTypH BOSMOKHH BO3BPATHHE NBHKEHMA HUIHOCTH B HOTPAHWYHOM
cj10€. DKCNEPUMEHTAIbHHE JaHHHE MOKA3HBAIOT, YTO 3TO MOMeET OBITH CIEACTBHEM T'MEPO-
AUHAMHMYECHON HEyCTORYMBOCTH.
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